Identification of novel secreted fatty acids that regulate nitrogen catabolite repression in fission yeast

نویسندگان

  • Xiaoying Sun
  • Go Hirai
  • Masashi Ueki
  • Hiroshi Hirota
  • Qianqian Wang
  • Yayoi Hongo
  • Takemichi Nakamura
  • Yuki Hitora
  • Hidekazu Takahashi
  • Mikiko Sodeoka
  • Hiroyuki Osada
  • Makiko Hamamoto
  • Minoru Yoshida
  • Yoko Yashiroda
چکیده

Uptake of poor nitrogen sources such as branched-chain amino acids is repressed in the presence of high-quality nitrogen sources such as NH4(+) and glutamate (Glu), which is called nitrogen catabolite repression. Amino acid auxotrophic mutants of the fission yeast Schizosaccharomyces pombe were unable to grow on minimal medium containing NH4Cl or Glu even when adequate amounts of required amino acids were supplied. However, growth of these mutant cells was recovered in the vicinity of colonies of the prototrophic strain, suggesting that the prototrophic cells secrete some substances that can restore uptake of amino acids by an unknown mechanism. We identified the novel fatty acids, 10(R)-acetoxy-8(Z)-octadecenoic acid and 10(R)-hydroxy-8(Z)-octadecenoic acid, as secreted active substances, referred to as Nitrogen Signaling Factors (NSFs). Synthetic NSFs were also able to shift nitrogen source utilization from high-quality to poor nitrogen sources to allow adaptive growth of the fission yeast amino acid auxotrophic mutants in the presence of high-quality nitrogen sources. Finally, we demonstrated that the Agp3 amino acid transporter was involved in the adaptive growth. The data highlight a novel intra-species communication system for adaptation to environmental nutritional conditions in fission yeast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria through Nitrogen Overflow

Many microorganisms live in communities and depend on metabolites secreted by fellow community members for survival. Yet our knowledge of interspecies metabolic dependencies is limited to few communities with small number of exchanged metabolites, and even less is known about cellular regulation facilitating metabolic exchange. Here we show how yeast enables growth of lactic acid bacteria throu...

متن کامل

Role of nitrogen and carbon transport, regulation, and metabolism genes for Saccharomyces cerevisiae survival in vivo.

Saccharomyces cerevisiae is both an emerging opportunistic pathogen and a close relative of pathogenic Candida species. To better understand the ecology of fungal infection, we investigated the importance of pathways involved in uptake, metabolism, and biosynthesis of nitrogen and carbon compounds for survival of a clinical S. cerevisiae strain in a murine host. Potential nitrogen sources in vi...

متن کامل

Novel Targets of the CbrAB/Crc Carbon Catabolite Control System Revealed by Transcript Abundance in Pseudomonas aeruginosa

The opportunistic human pathogen Pseudomonas aeruginosa is able to utilize a wide range of carbon and nitrogen compounds, allowing it to grow in vastly different environments. The uptake and catabolism of growth substrates are organized hierarchically by a mechanism termed catabolite repression control (Crc) whereby the Crc protein establishes translational repression of target mRNAs at CA (cat...

متن کامل

Machine learning techniques to identify putative genes involved in nitrogen catabolite repression in the yeast Saccharomyces cerevisiae

BACKGROUND Nitrogen is an essential nutrient for all life forms. Like most unicellular organisms, the yeast Saccharomyces cerevisiae transports and catabolizes good nitrogen sources in preference to poor ones. Nitrogen catabolite repression (NCR) refers to this selection mechanism. All known nitrogen catabolite pathways are regulated by four regulators. The ultimate goal is to infer the complet...

متن کامل

Effect of low-temperature fermentation on yeast nitrogen metabolism

The aim of this study was to analyse the influence of low-temperature wine fermentation on nitrogen consumption and nitrogen regulation. Synthetic grape must was fermented at 25 and 13 C. Lowtemperature decreased both the fermentation and the growth rates. Yeast cells growing at low-temperature consumed less nitrogen than at 25 C. Specifically, cells at 13 C consumed less ammonium and glutamine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016